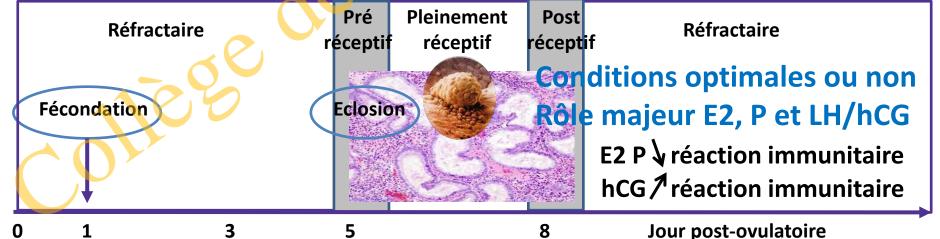
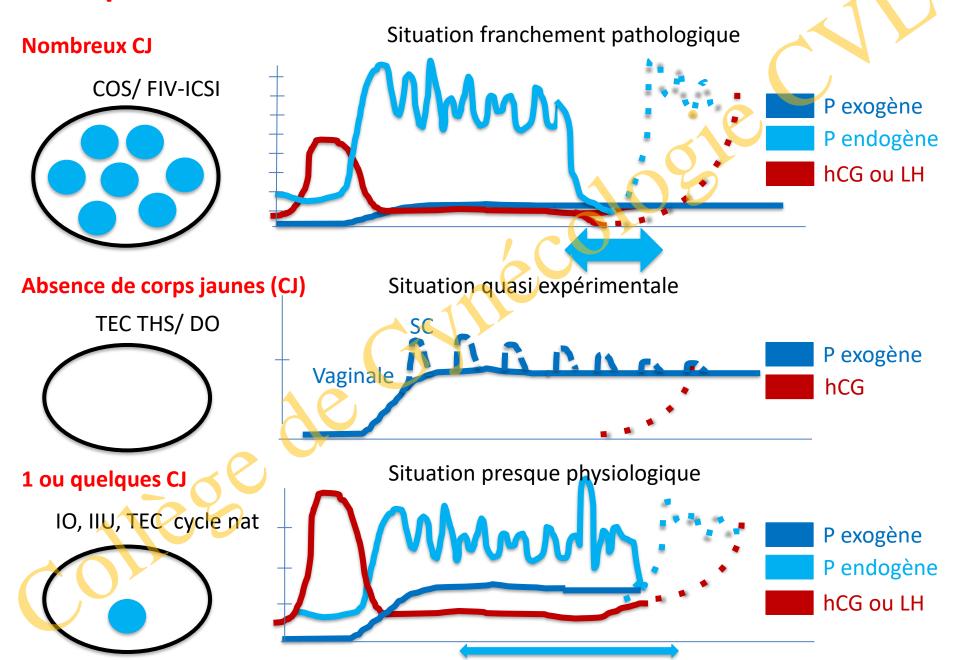


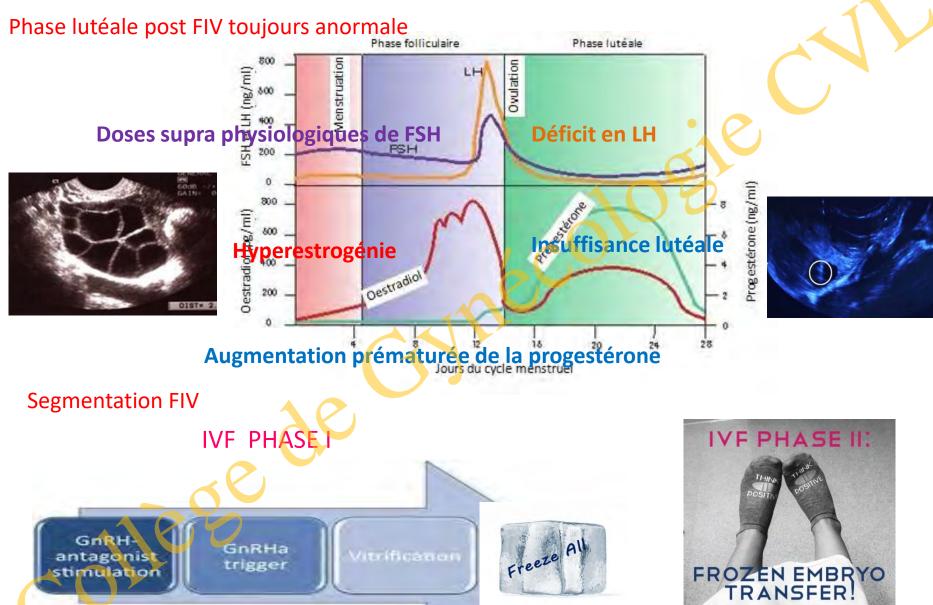
La phase lutéale en AMP:


un acteur clé du succès à reconsidérer avec plus d'attention

Dr Isabelle CEDRIN-DURNERIN
Service de Médecine de la reproduction et
Préservation de la fertilité
Hôpital Jean vertier, Bondy, Paris XIII

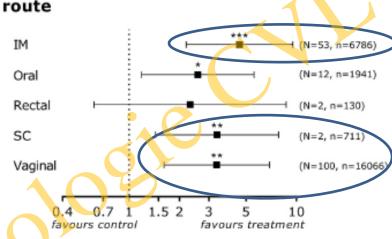


Qu'est ce que la phase lutéale?


- Elle se prépare en phase folliculaire par sécrétion d'estradiol (E2)
 Prolifération de l'endomètre > 7 mm
 Induction des récepteurs à la progestérone (P)
- Début sécrétion P = Timing d'ouverture de phase d'implantation Niveau de sécrétion P = Transformation sécrétoire de l'endomètre qui induit la fermeture de phase d'implantation
- Elle détermine la fenêtre d'implantation de l'embryon

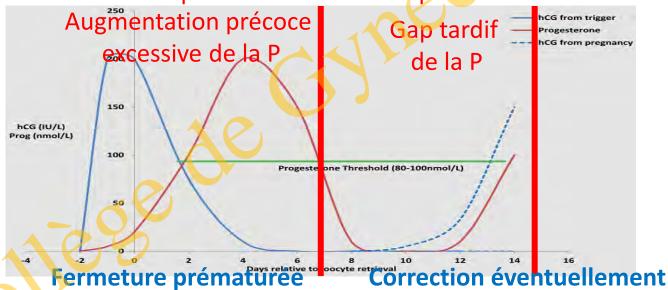
La phase lutéale en AMP: 3 situations très différentes

Nombreux corps jaunes



Nombreux corps jaunes

Soutien lutéal P obligatoire et efficace


Meta-analyse Mohammed FS 2019 82 études 26 726 femmes

Chances grossesses cliniques x 2,5 à 4,5 selon type P si début entre ponction et transfert et poursuite jusqu'au test de grossesse

Odds ratio vs. control [N=8, n=498]

Perturbations de la phase lutéale FIV complexes et multifactorielles

Fermeture prémature d'implantation insuffisante par le soutien lutéal

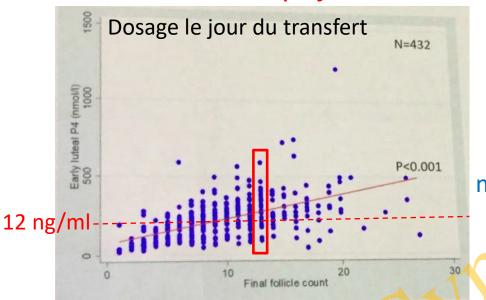
Diminution des taux de naissances

La mesure de la P en phase lutéale FIV

Thomsen 2018 Etude de pulsatilité 7 jours post ponction

Dosages toutes les heures pdt 12 h tous les ¼ d'heures / 2 heures

FIGURE 1 Individual mid-luteal serum profiles at progesterone over a 12-h interval in 10 patients, undergoing controlled overtan stimulation for in with fortilization treatment.


Les déterminants du taux P en phase lutéale FIV

Le type de declenchement Phase lutéale <u>non supplémentée</u> en prot, antagoniste hCG (IU/L) LH (IU/L) E2 (nmol/L) P (nmol/L) △ r-hCG ° r-hLH post P 600 n=11 400 hCG 10 200 **Beckers** 600 **JCEM 2003** J4 post P Déficit lutéal 400 n=15 **GnRHa** plus profond et plus précoce 200 - facile à corriger r +4 +8 +12 +16 +8 +12 +16 Le taux de P au déclenchement GnRHa trigger hCG trigger 199 femmes 140 **Wang HR 2019** 189 femmes Progesterone on the day o oocyte retrieval (nmol/L) 120 -100 100 Analyse à postériori 30 ng/ml RCT Humaidan 2013 20 ng/ml 60 40 20 10 15 Progesterone on the day of ovulation induction (nmol/L)

Taux de P J ponction d'autant plus élevé que hCG et P augmentée J déclenchement

Les déterminants du taux P en phase lutéale FIV

Le nombre de corps jaunes

Thomsen ESHRE 2019

Déclenchement 61% hCG

39% GnRHa + hCG 1500 UI JP

Soutien lutéal P vaginale 300 mg/J


+ il y a de corps jaunes

+ le taux de P est élevé

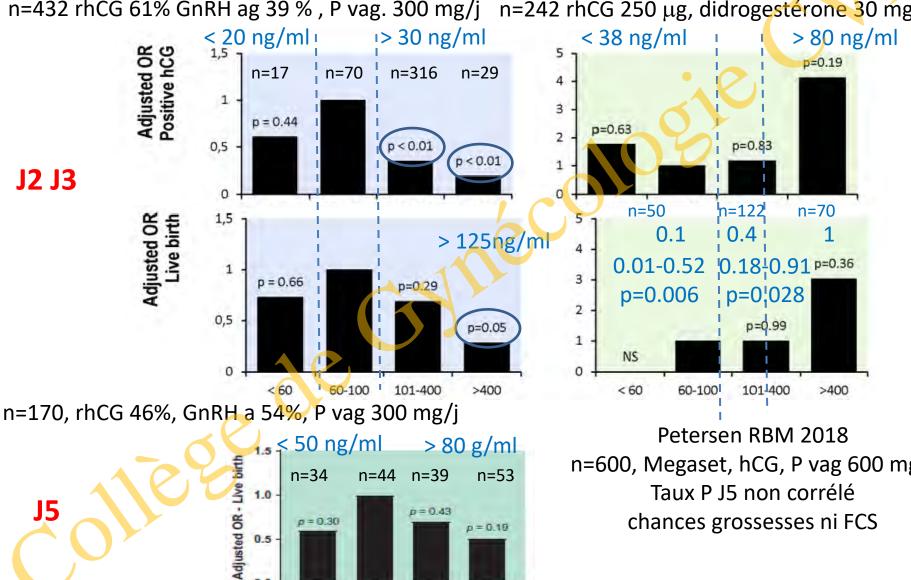
mais grande variabilité pour même nb de CJ

Environ 12 % des patientes ont un taux de P< 12 ng/ml lié uniquement à supplémentation P

Mais impact clinique négatif si > 20

20 ovocytes

Sunkara HR 2011 Analyse de plus de 400 000 cycles UK


2 méta-analyses (7 études communes) Roque HRU 2019 11 études 5379 patientes Bosdou HR 2019 8 études 5265 patientes

Freeze-all + TEC > T frais uniquement chez hyper-répondeuses/ PCOS RR= 1.16 (1.05-1.28) / 1.18 (1.06-1.31)

Faut-il mesurer la P au moment du transfert?

Thomsen et al. HR 2018 Netter et al. PlosOne 2019

n=432 rhCG 61% GnRH ag 39 % , P vag. 300 mg/j n=242 rhCG 250 μg, didrogestérone 30 mg/j

p = 0.43

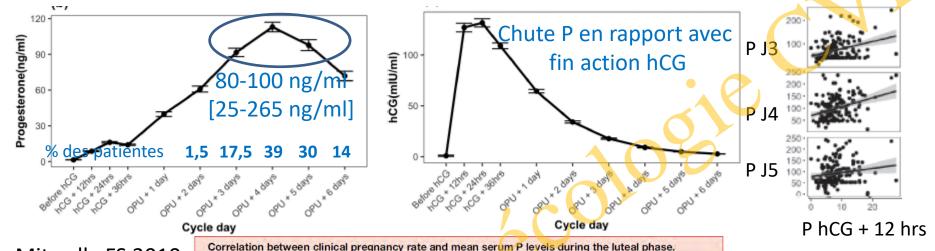
p = 0.10

p = 0.30

0.5

J5

n=600, Megaset, hCG, P vag 600 mg/j Taux P J5 non corrélé chances grossesses ni FCS


Pas d'intérêt démontré pour l'instant

Faut il doser la P au moment du gap?

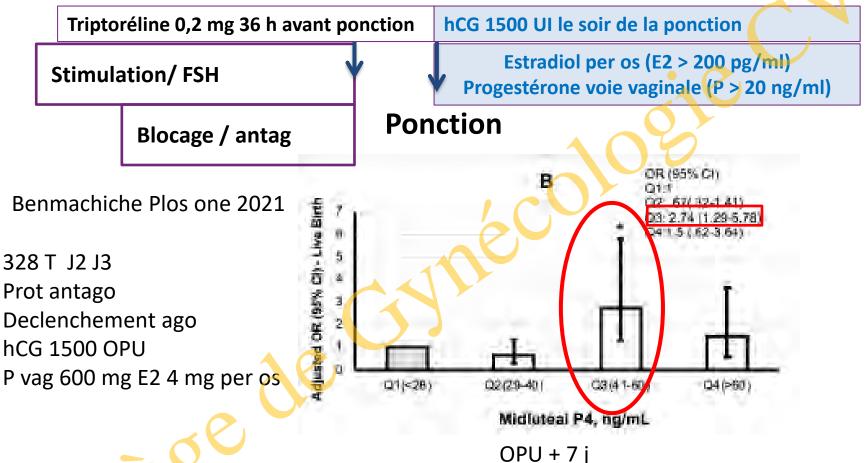
Vuong HR 2020

n= 160, hCG, 13,8 ± 6 ovo, freeze-all, pas de soutien lutéal

Mitwally FS 2010

Dosages répétés de P de J3 à J18 post ponction

Luteal support group and range of mean P levels (ng/m	nL) No. of women	No. of clinical pregnancies	Clinical pregnancy rate	P (test for trend)
Vaginal P:				<.0001
16–48	37	11	30	
49–80	27	15	56	
81-112	22	17	77	
113-144	8	8	100	
145–173	4	3	75	
IM-P ₄ :				<.003
11 to 46	47	27	57	
47–81	142	59	42	
82-116	54	33	61	
117-151	20	16	80	
152-193	12	10	83	

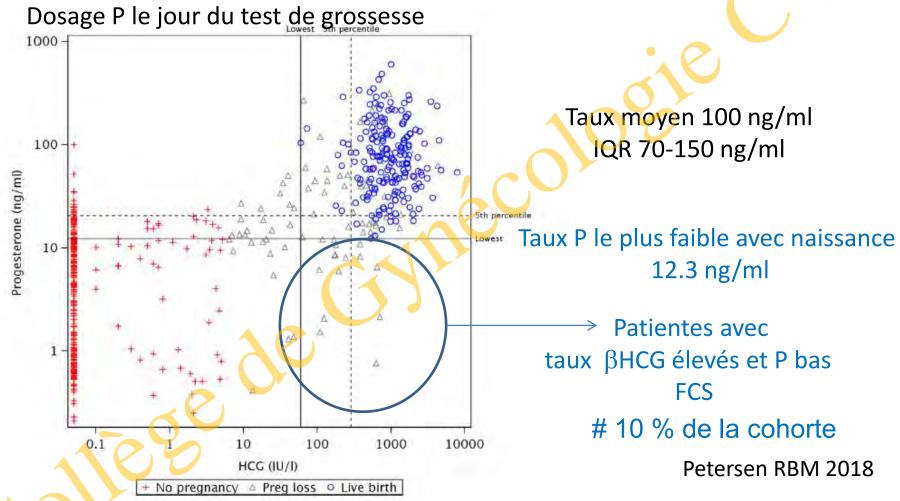

Taux de grossesse diminués pour les expositions les + faibles quelque soit le soutien

ote: The ranges for each of the five groups were increments of SD (the range between the highest and lowest mean P leve divided by the SD).

Auteurs	n=	Soutien lutéal	Moment dosage	Seuil
Sontag 2013	71	P vag 600mg/j ou gel 90 mg/j	OPU + 9 ou 10	40 ng/ml
Alish 2017	146	P vag 200 ou 300 mg/j	OPU + 9 ou 10	17 ng/ml
Perez 2018	238	P IM 50 mg/J	OPU + 9	25 ng/ml

Faut il doser la P au moment du gap?

Avec déclenchement / agoniste et soutien lutéal renforcé

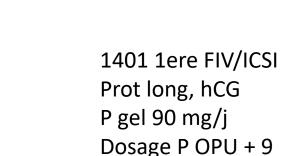


- Taux de naissance optimal pour P entre 41 et 60 ng/ml
- Coasting lutéal Dose et moment de l'injection d'HCG en fonction de la chute de la P
 - Rationel physiopatho +++ mais pas de consensus sur valeur seuil de P

Faut-il doser la P le jour du test de grossesse?

FIV après déclenchement / hCG
Prot antag (MEGASET) Transfert blasto P vag 600

600 ISCI Prot antag (MEGASET), Transfert blasto, P vag 600 mg/jour

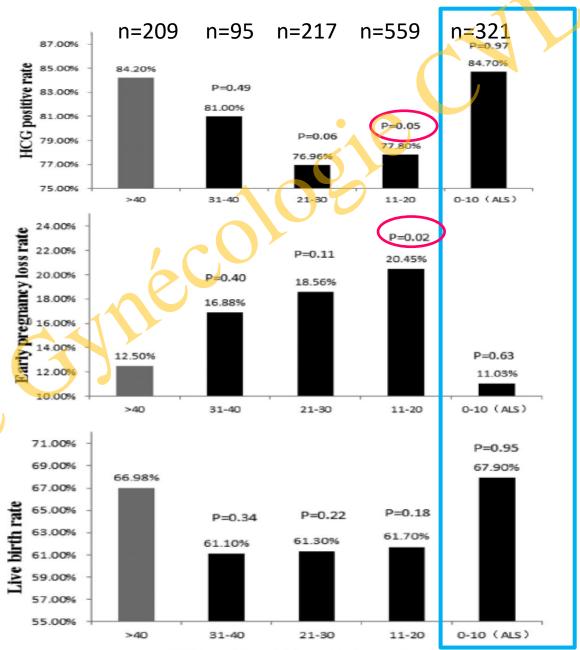


Permet de repérer les patientes avec faible absorption P (test préalable + judicieux)

Permet d'individualiser l'arrêt du soutien lutéal

Segal RBM 2015 P > 30 ng/ml (100 nmol/l) E2 > 300 pg/ml (1000 pmol/l)= corps jaunes fctels

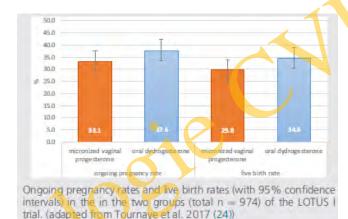
Modification du soutien lutéal selon taux P


TU Gynecol endoc 2020

Si P < 10 ng/ml + dydro 20mg/j

Lotus 2

D 10 mg x3 vs P gel 90 mg/j



P4 level in mid-luteal phase (ng/mL)

Modification du soutien lutéal

Lotus 1 D 10 mg x 3 vs P vag 200 mg x3 /j

Expérience Jean Verdier

Avant Covid P vaginale 400 mgx2 / jour débuté le soir de la ponction Covid: P vag idem + Dydrogestérone 30 mg/ jour débuté le soir du transfert

FIV ICSI	Sept 2019- Mars 2020	Mai -Décembre 2020	р
Données non publiées	P vaginale	P vag+ Dydrogestérone	
ponctions	349	256	
transferts	224	161	
HCG > 100 / transfert	79 (35.3 %)	73 (45.3%)	0.046
AC + à l'écho	64 (28.6 %)	58 (34.8 %)	NS (0.19)
Nb emb transférés	1.6 <u>+</u> 0.6	1.6 <u>+</u> 0.6	NS
Stade J2 J3 blasto (%)	16/37/47	16/44/40	0.017
Age	35.2 <u>+</u> 4.6	35.7 <u>+</u> 4.7	NS
BML	25.1 <u>+</u> 5.3	24.6 <u>+</u> 4.6	NS

Take Home messages P en phase lutéale

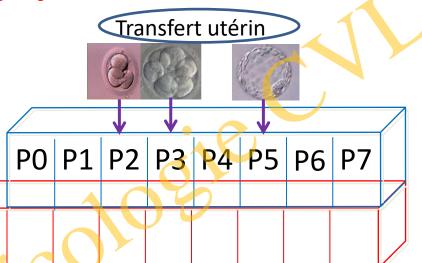
Nombreux CJ

Phase lutéale pathologique

Hypothèse impact négatif excès précoce de P reste à démontrer

Gap tardif de P associé à diminution des chances de grossesse et augmentation des FCS

Test préalable d'absorption P vaginale ? Soutien lutéal individualisé? 2 voies #?


Dosage lutéal de progestérone

Non faisable en routine pour l'instant car seuil ? et intérêt ?

Sauf le jour du test de grossesse, dépister mauvaise absorption et individualiser arrêt du soutien

Absence de corps jaune

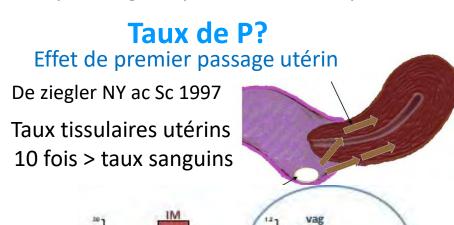
Modèle pour étudier rôle des stéroïdes et des différentes voies d'administration

Voie orale Voie percutanée Voie vaginale

Voie orale: P micronisée ou dydrogestérone Voie parentérale: huileuse (IM quot ou R), aqueuse (SC) Voie vaginale: capsule, gel, cp effervescent, pessaire

Taux d' E2

Si endomètre ≥ 7 mm


Taux d'E2 avant introduction P ou Jour T

non corrélé aux taux de G

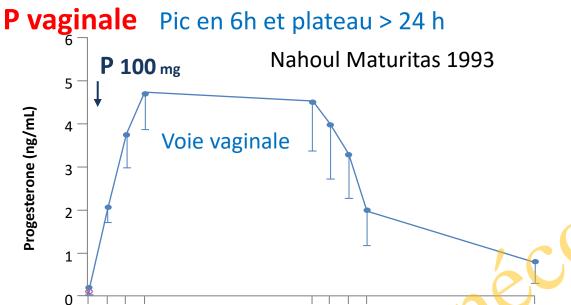
Bocca JARG 2015, Remohi HR 1997

Labarta 2017, Cédrin-Durnerin 2019

Mesure en début de grossesse ?

TEC en cycle artificiel pratique mais efficace?

Méta-analyse Glujvosky Cochrane 2020 (31 études RCT, (5426 femmes)


Taux G cliniques	TEC contrôle	TEC en CA	OR	Grade évidence
Cycle stimulé	85/306	67/350	1.63 (1.12-2.38)	Faible
Cycle naturel	188/610	222/639	0.79 (0.62-1.01)	Très faible

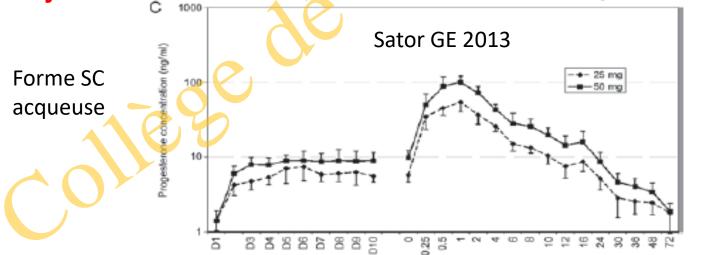
> Extraction Medifirst 2014-2016 dans 9 centres

	Total	1	2	3	4	5	6	7	8	9
Nombre TEC	16081	2048	2031	1581	1185	2114	1849	1108	1336	2829
Grossesse	4051	122	374	415	345	462	481	389	295	868
	(25,2)	20,6)	(18,4)	26,2)	(29,1)	(21,8)	(26)	(35,1)	(22,1)	(30,7)
Perte foetale	1236	111	120	136	108	157	137	109	96	262
12sa	(30,5)	(26,3)	(32)	32, 7)	(31,3)	(34)	(28,5)	(28)	(32,5)	(30,2)
Naissance	2627	287	232	258	217	288	332	264	184	565
vivante	(16,3)	(14,4)	(11,4)	16,3)	(18,3)	(13,6)	(18)	(23,8)	[13,8]	(20)
Perte foetale cycle artificiel	685	27	71	124	60	132	72	83	89	27
	(35,9)	(31,8)	(41)	36,8)	(31,6)	(38,7)	(35,1)	(33,9)	33,8)	(39,7)
Perte foetale	336	80	12	4	1	20	57	16	6	140
cycle stimulé	(26,3)	(25,1)	(29,2)	12,1)	(7,7)	(24,4)	(23,1)	(18,6)	20,7)	(32,6)
Perte foetale	215	4	37	8	47	5	8 (10	1	95
cycle spontané	(24,8)	(21)	(23,1)	17,8)	(33,1)	(12,8)	27,6)	(17,2)	(33,3)	(25,6)

Vinsonneau (publication en cours)	HRT vs mNC	HRT vs Stim C	Stim C vs mNC
OR multivarié pertes grossesses	1.63	1.87	0.88
	1.35-1.97	1.55-2.26	0.69-1.10

Mesure des taux de P sous THS

4 6


Etat d'équilibre en 48 heures.

	9 5		
P ng/ml Centiles	P1 n=376 2019-20	P2 n=481 2017-18	P3 n=72 2016
Moy	10.2 + 3.9	12.4 <u>+</u> 4.3	12.4 <u>+</u> 4
10	6	7.6	7.7
25	7.7	9.5	9.7
50	9.6	11.8	11.8
75	12.2	14.8	15.5
90	15.3	17.8	17.6

F de variations: insertion vaginale gélule, rapports sexuels (Merriam 2015), vaginite

Temps (heures)

P injectable Etat d'équilibre en 48 heures. Dosage # 12 h après injection

24262830

F de variations: poids (Mejia FS 2018)

Importance du taux de P en cycle substitué avec P vaginale

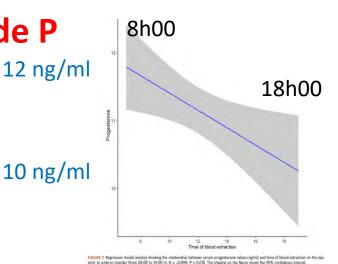
Taux P mesuré au moment du transfert

Ref	Pop.	E2	Dose P (mg/j)	Timing dosage P	J transfert	Issue fct seuil P OR ajusté	% Patients Seuil ROC
Yovich 2015 Retrosp.	TEC 529	Vag.	Pessaire 1 200	J2 ou 3 post transfert emb	Eset J5	LBR optimal pour 15 < P < 30 ng/ml	? ?
Labarta 2017 Prospect.	RDO 211	Oral Patch	Capsule 800	Jour transfert	J5	OPR diminué pour P < 9.2 ng/ml (Q<) ORa 0.62 (0.41-0.94)	25 % 11 ng/ml Quartile
Gaggiotti 2018 Retrosp.	TEC 244	Oral	Capsule 600	J4 =1 j avant transfert Annul si P<5	J5 Euploides	LBR diminué pour P < 10.64 ng/ml ORa 0.57 (0.34-0.97)	50 % ? médiane
Cedrin 2019 Retrosp.	TEC 227	Vag Patch	Capsule 600 Aug si P <10 ng/ml	Jour transfert	J2,J3,J5	LBR diminué pour P < 10 ng/ml ORa 0.36 (0.18-0.71)	37 % 13,5 ng/ml Seuil litterature
Labarta 2020 Prospect.	TEC RDO 1205	Oral	Capsule 800	Jour transfert	J5	LBR diminué pour P < 8.8 ng/ml ORa 0.52 (0.40-0.69)	30 % 10,4 ng/ml
Volovsky 2020 Retrosp.	TEC 2010	Oral	Capsule 600 Aug si P <8 ng/ml	Jour transfert	J5	LBR diminué pour P < 5 ng/ml (mais pas 10 ng/ml) ORa 0.40 (0.19-0.84)	Seuil litterature

Importance du taux de P en cycle substitué avec P vaginale

Taux P mesuré au moment du test de grossesse

Ref	Pop.n	E2	Dose P (mg/j)	Timing dosage P	J transfert	Issue fct seuil P OR ajusté	% Patients Seuil ROC
Basnayake 2017 Retrosp.	TEC 1580	Oral	Variable Gel ou pessaire	J16 (test βhCG)	J3 ou J5	LBR diminué pour P < 15 ng/ml ORa 0.32 (0.22-0.55)	85 % ? Seuil P cycle nat
Alsbjerg 2018 Retrosp.	TEC 244	Oral	Gel 90 x 3	J9 à 11 (test βhCG)	J5	OPR diminué pour P < 11 ng/ml ORa 0.54 (0.32-0.91)	51 % 11 ng/ml Sensitivity anal
Alsbjerg 2020 Prospec.	TEC 239	Oral	Gel 90 x2 vag + 90 x2 rec	J9 à 11 (test βhCG)	15	OPR diminué pour P <9 (NS) ou >14 ng/ml ORa 0.48 (0.18-1.24) ORa 0.53 (0.30-0.97)	10% et 49 % 10 ème et 50 ème P Sensitivity anal


Gonzalez Foruria, RBM 2020

685 T de blasto avec dosage P la veille du T

Age Corrélation +

Poids Corrélation -

Moment du dosage / prise vaginale ATCD de taux bas sur cycle précédent ++++

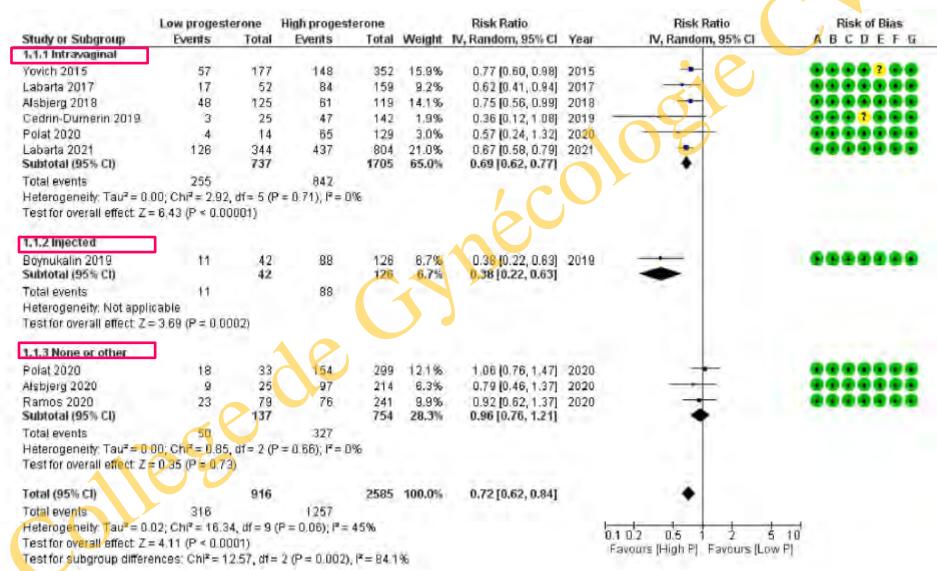
Résultats des DO en fonction du taux de P/ cycle témoin

2011–2016: 110 receveuses cycle témoin et don avec >1 transfert Cycle témoin 12 Labrosse JARG 2021 Taux moyen P à P2 = $12.8 \pm 4.5 \text{ ng/ml}$ 10 Nombre de patientes 1/3 a une P < 10 ng/ml au 2ème jour introduction P 15 20 25 30 35 Résultats du DO dans les 1 à 5 ans qui suivent P ng/ml P< 10 ng/ml P > 10 ng/mlDonnées non publiées n = 35n = 75Au premier transfert 20% (7) 44% (33) 0.01 Taux de grossesse Taux de naissance vivante 9% (3) 32% (24) 0.01 Au total sur le don (T frais + congelé) Taux cum de naissance vivante/ Patiente 14% (5) 35% (26) 0.02 Taux cum de naissance vivante/ Transfert 11% (45 T) 27% (97 T) 0.03

Pb d'absorption par voie vaginale semble constitutif de la patiente

Importance du taux de P en cycle substitué avec P injectable

Ref	Pop.n	E2	Dose P (mg/j)	Timing dosage P	Jour Transfert	Effet sur l'issue	% patient seuil ROC
Brady 2014 Retrosp.	RDO 229	Vag. Patch	175 ou 200 IM	J transfert	J3	LBR 51 vs 65 % pour P < 20 ng/ml	32 %
Kofinas 2015 Retrosp.	TEC PGS 213	Oral	50 ou 75 IM # modif	J transfert P>10 ng/ml Requis	eSET J5 euploide	LBR 49 vs 65 % pour P > 20 ng/ml + G bio/FCS si P>30ng/ml	? Oui
Liu 2018 Retrosp	TEC EQ+ 426	Oral	80 IM	J avant T	J3	CPR 36 vs 53 % pour P < 20 ng/ml CPR 58 % si P> 40 ng/ml	18%
Boynukalin 2019 Prospect	TEC PGS 168	Oral	100 IM	J transfert	J5 euploide	OPR 42 vs 70% pour P < 20.6 ng/ml FCS 15 vs 5 %, 0 si P>50	40% 20.6 ng/ml
Polat 2020 Retrosp	TEC 332	Oral	50 IM 90x2	J transfert	J5	OPR 47.5 vs 56 % NS pour P < 19,86 ng/ml	50 % Mediane
Ramos 2021 Retrosp	TEC 320	Oral	25 SC + 800 vag	J-1 ou 2 avant T	J5	OPR 26 vs 36 % NS pour P < 21,9 ng/ml FCS 28% vs 12 %	50 % Mediane
Alyasin 2021 Prosp	TEC 258	Oral	50 IM+ 1200 vag	J transfert	J5	LBR diminué pour P > 49 ng/ml/ Q2 :19-29 ORa 0,24 (0,10-0,54)	Quartile 32,.5 ng/ml
	C - '					P injectable	

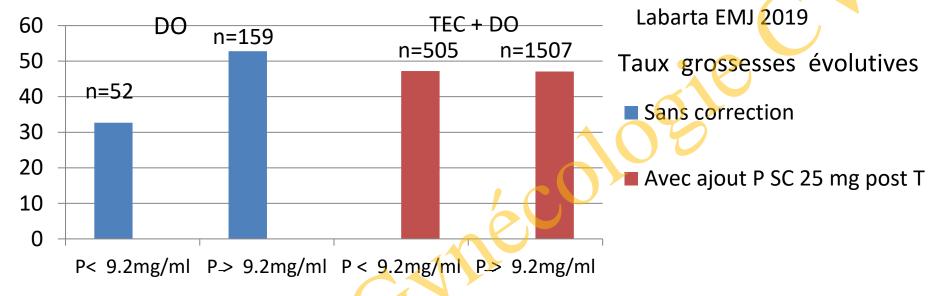

Taux faibles de P non rares avec P injectable
Seuil plus élevé 20 ng/ml? (Absence premier passage utérin)
Plafond de P au delà de 30 ng/ml ? (Pb timing dosage)

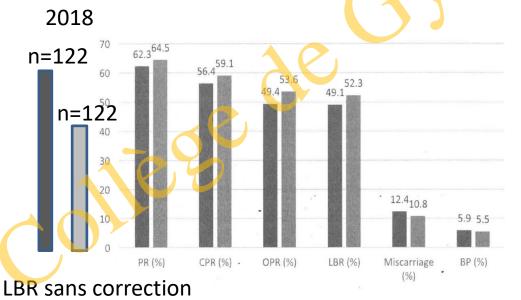
Taux de P insuffisant en TEC THS= plus de FCS et moins de naissance

RR 1.48 (1.17-1.86)

RR 0.73 (0.59-0.90)

Grossesse évolutive




Méta-analyse à paraître

Alors que faire?

Stratégie d'ajustement des doses de P au transfert

Adjonction de P injectable SC à P vaginale efficace

Alvarez HR 2021

598 cycles TEC blasto euploïd PGT-a P 600 mg/jour Dosage la veille du transfert P > 10.6 ng/ml à P+ 4j (n= 342)

- P < 10.6 ng/ml à P+ 4j (n= 226) + P SC 25 mg et P > 10.6 avant T
 - 4 cycles annulés pour P inadéquate J T

Stratégie d'ajustement des doses de P au transfert

Augmentation des doses de P IM efficace

Alur Gupta Fertility Research and Practice 2020

Etude rétrospective TEC blasto THS avec mesure E2 et P la veille du transfert (>juin 2015)

Augmentation des doses d'E2 de 6 à 8 mg/j si E2 < 150 pg/ml

Augmentation des doses de P IM de 50 à 75 mg/j si P < 15 ng/ml

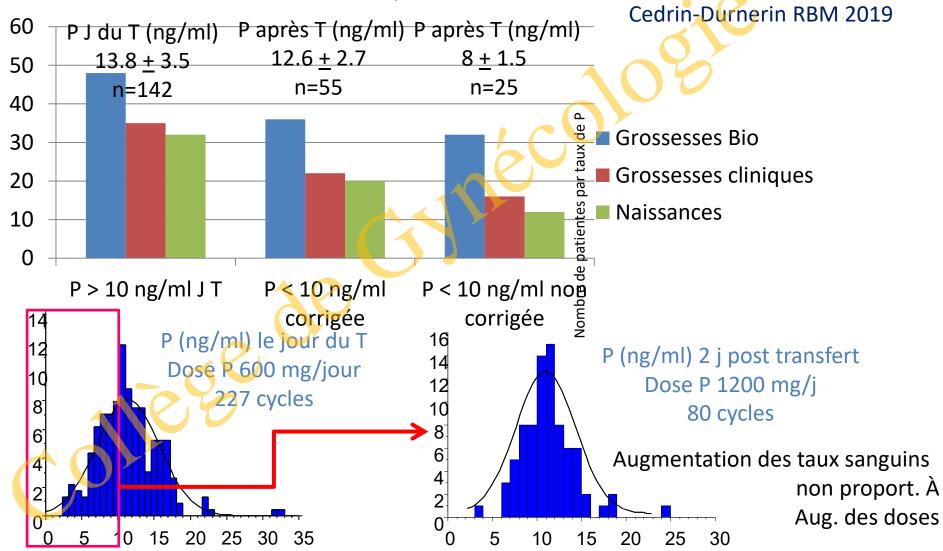
1/3 de patientes avec adaptation TTT

Table 3 Pregnancy Outcome of Patients in Surveillance vs Standard protocols & Change in Hormones vs No Change

	Surveillance protocol (N = 524)	Standard protocol (N = 379)	aOR (95% CI)	p -value	Patients with change in hormones (N = 175)	Patients without change in hormones (N = 349)	aOR (95% CI)	p -vä lu
Positive hCG ^a	366/524 (70%)	231/379 (61%)	1.6 (1.2, 2.2)	0.002	115/175 (66%)	251/349 (72%)	0.8 (0.5, 1.2)	0.3
Live birth	268 (51%)	149 (39%)	1.6 (1.2, 2.2)	0.001	83 (47%)	185 (53%)	0.8 (0.6, 1.2)	0.4
Spontaneous abortion	51 (10%)	38 (10%)	1.0 (0.7, 1.7)	0.9	13 (7%)	38 (11%)	0.6 (0.3, 1.2)	0.2
Therapeutic abortion	4 (0.8%)	2 (0.5%)	1.4 (0.2, 8.1)	0.7	1 (0.6%)	3 (0.9%)	0.7 (0.1, 7.4)	0.8
Stillborn (> 20 weeks)	2 (0.4%)	2 (0.5%)	0.9 (0.1, 6.6)	0.9	1 (0.6%)	1 (0.3%)	2.0 (0.1, 35.0)	0.6
Ectopic Pregnancy	1 (0.2%)	2 (0.5%)	0.5 (0.1, 6.2)	0.6	0 (0%)	1 (0.3%)	-	- 1
Biochemical Pregnancy	40 (7.6%)	38 (10%)	0.8 (0.5, 1.3)	0.4	17 (10%)	23 (7%)	1.7 (0.9, 3.4)	0.1

All analyses were performed using logistic regression adjusted for age, BMI, number of embryos transferred and PGT

Surveillance efficace pour augmenter taux de naissance vivante OR 1,6 (1,2 -2,2) 1/3 des patientes ont eu une adaptation de doses


Taux de naissances non différents si adaptation des doses quand taux bas OR 0,80 (0,6-1,2)

⁼ Positive hCG represents summation of all pregnancy outcomes listed below this row

Stratégie d'ajustement des doses de P au transfert

Augmentation des doses de P vaginale inefficace

Doublement dose P de 600 à 1200 mg/j si P < 10 ng/ml le jour du T (3/2016-03/2017) et contrôle du taux de P 48 heures plus tard

Stratégie d'ajustement des doses de P vaginale avant transfert

481 cycles TEC P 600 mg/j. Dosage P à J2= 12.4 ± 4.3 ng/ml Si P > 10ng/ml, T en phase Si P < 10 ng/ml aug 1200 mg/j et contrôle lendemain, si > 10 ng/ml T décalé d'1 jour Si P < 10 ng/ml annulation = 55 cycles (11,5 %) 2 dosages=28 % des patientes

Données non publiées	Transfert en phase	Transfert décalé d'1 jour	р
03/2017- 10/2018	n=346	n= 80	
Age (ans)	34.6 <u>+</u> 4.7	34.1 <u>+</u> 5.0	NS
BMI (kg/m²)	25 <u>+</u> 4.6	24.9 <u>+</u> 5	NS
Avant P E2 (pg/ml) LH (UI/I) P (ng/ml) Endomètre (mm)	1191 ± 807	943 ± 704	0.02
	5.5 ± 5.4	4.8 ± 5.4	NS
	0.2 ± 0.2	0.2 ± 0.2	NS
	9.6 ± 2.1	9.9 ± 2.7	NS
Après P P J2 (ng/ml) P J3 (ng/ml) Dernière P < T (ng/ml)	14.2 <u>+</u> 3.6 NA 14.2 <u>+</u> 3.6	8.2 <u>+</u> 1.7 12.5 <u>+</u> 2.8 12.5 <u>+</u> 2.8	<0.001
Nombre d'embryons T J2 (%) J3 (%) J5 (%)	1.5 <u>+</u> 0.6 7.5 44.2 48.3	1.5 <u>+</u> 0.6 8.7 32.5 58.8	NS NS
βhCG> 100 UI/L(%) AC+ 8 SA en US (%) G évolutive à 12 SA (%) Accouchements (%)	38.7	47.5	NS
	29.7	31.2	NS
	29.5	28.7	NS
	28.6	28.7	NS

Stratégie d'ajout P orale avant transfert

376 cycles TEC substitués (Données non publiées 11/2018 -03/2020)

Mesure de la P à J1et si P < 11 ng/ml ajout dydrogestérone et Transfert décalé de 24 heures

	P vaginale T en phase n= 139	P vag+ Dydro T décalé de 24 H n= 237 (62%)	р
Age	34.0 <u>+</u> 4 .9	34.1 <u>+</u> 4 .9	NS
BMI	25.1 <u>+</u> 4.3	24.8 <u>+</u> 4.8	NS
Avant introduction P E2 (pg/ml) P (ng/ml) Endomètre (mm)	1431 <u>+</u> 730	1241 <u>+</u> 714	0.014
	0.2 <u>+</u> 0.2	0.2 <u>+</u> 0.2	NS
	9.7 <u>+</u> 2.1	9.7 <u>+</u> 2.2	NS
J1 post introduction P E2 (pg/ml) P (ng/ml)	13.9 <u>+</u> 2.9 392 <u>+</u> 355	8 <u>+</u> 1.9 287 <u>+</u> 226	0.0001 0.0005
Nb embryons transférés	1.5 <u>+</u> 0.6	1.4 <u>+</u> 0.5	0.008
Emb de bonne qualité (%)	68.3	73.8	NS
J2/ J3/ Blasto (%)	5 / 32.4 / 62.6	5.5 / 25.3/ 69.2	NS
hCG > 100 UI/I (%)	35.2	40.5	NS
AC+ à l'écho (%)	28.8	29.1	NS
G évolutives à 12 SA (%)	28.1	27	NS
Naissances vivantes (%)	27.3	26.1	NS

Stratégies d'anticipation avant transfert

	Cycle substitué	Cycle avec corps jaune	р
2014-2015 normo-	n = 299	n = 217	
ovulatoires	Taux βhCG >100 UI/L = 36 %	Taux β hCG > 100 UI/L = 33	0.49
516 TEC	P (ng/ml) J βhCG + = 12.9 \pm 8	P (ng/ml) J βhCG + = 42 \pm 25	<0.001
	Perte /grossesse = 39 %	Perte / grossesse = 22 %	0.019
	Naissance/ TEC = 22%	Naissance /TEC = 25.8%	0.32
2018 tous cycles	n=320	n=289	
609 TEC	Taux β hCG >100 UI/L = 38.7 %	Taux $βhCG > 100 UI/L = 35.3 %$	0.38
>10/18 P J2 1200 mg	Perte / grossesse = 27.5 %	Perte / grossesse = 24.5 %	0.50
<11/18 P J1 + dydro	Naissance/TEC = 28.1%	Naissance/TEC = 26.9 %	0.75

Pandémie Covid plus de dosage de P, ajout systématique de dydrogestérone

TEC THS	Sept 2019 Mars 2020 + Dyd si P <11 ng/ml à J1 n=195	Covid Mai Dec 2020 + Dyd systématique n=198	р
HCG > 100	76 (39 %)	78 (39.4 %)	NS
AC + à l'écho	54 (27.7 %)	58 (29.3%)	NS
Nb emb transferes	1.4 + 0.5	1.3 + 0.5	NS
Stade Transfert J2 J3 blasto	6/35/154	15/32/151	NS
Age	34.1 <u>+</u> 4.9	34.5 <u>+</u> 5.1	NS
BMI/	24.9 <u>+</u> 4.5	25 <u>+</u> 4.8	NS

Take Home messages P en phase lutéale

Pas de CJ = THS

Importance du taux de P

Taux P bas sous ttt lié aux chances de grossesse et risques de FCS

Taux P trop élevés ? Rare sauf doses vaginales très élevées (1200mg) ou association à P injectable

Dosage à faire de P2 au jour du transfert

P vaginale

¼ à ½ des patientes = absorption limitée (constitutionnel + épiphénomènes)

Seuil 9 à 15 ng/ml à établir avec son propre dosage

P injectable

Taux bas aussi fréquents qu'avec P vaginale (poids)

Dosage à réaliser juste avant injection

Seuil à retenir + élevé > 20 ng/ml (absence premier passage utérin)

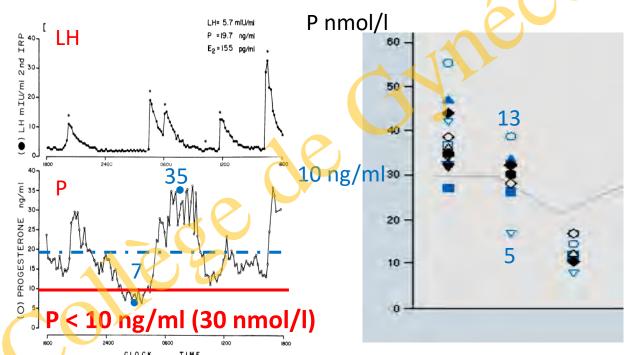
Adaptation soutien lutéal

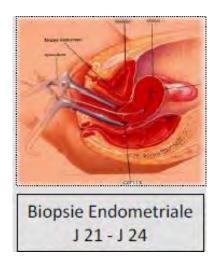
Adjonction autre voie d'administration SC ou orale > augmentation doses P vaginale

Ajout P SC efficace à P5, association d'emblée de 2 voies d'administration?

Un ou quelques corps jaunes

Pas de critères fiables d'évaluation de la phase lutéale

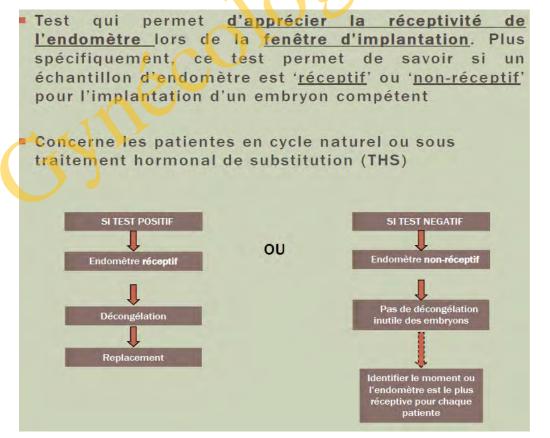

- ➤ Longueur phase lutéale <12 jours
- Dosage Progestérone en milieu phase lutéale
- Biopsie endomètre


Sécrétion pulsatile P Milieu phase lutéale

Filicori et al, 1984

Variabilité selon trousse dosage

Datation histologique de l'endomètre



Noyes 1950

Tests de réceptivité endométriale

	WIN TEST	ERA TEST
Population/ normes	F normo ovul ICSI	Donneuse fertile
Nb de gènes # exprimés LH + 7/LH+ 2	1012	238
Nb de gènes testés	Sélection de 13 gènes	Tous mais seul 134 spécifiques réceptivité endométriale

Echecs répétés d'implantation

Haouzi Reprod Sci 2021 (n=157)

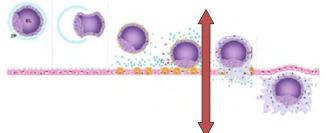
Simon RBM 2020 (n=80)

Matrice lab

MatriceLAB

Test d'exploration de l'immunité endométriale

Echecs répétés d'implantation **Datation Histologique** Compte des uNK **Expression Cytokinique (MLI) Extraction d'ARN** Reverse transcription - PCR en temps réel Biopsie Endometriale J 21 - J 24


Lédée F in Immunology 2020 (n=1145 RIF et 164 RM)

DEUX GRANDS CADRES PATHOLOGIQUES RESPONSABLE D'ÉCHECS

SOUS-ACTIVATION **ENDOMETRIALE**

25 %

Insuffisance de sécretion cytokinique Migration insuffisante cellules uNK Immaturité des cellules uNK

PROBLEME LORS de L'ADHESION

SUR-ACTIVATION ENDOMETRIALE

50 %

Migration excessive uNK Excès de cytokines Défaut immunorégulation locale

PROBLEME LORS de L'INVASION REJET-APOPTOSE

Personnalisation de la prise en charge

AUGMENTER la réactivité locale

- •Biopsie J21 cycle précédant la FIV
- •Limiter l'hyper-œstrogénie

Réduire stimulation/TEC cycle naturel

- •hCG phase lutéale
- Exposition au liquide séminal mobilisation des cellules immunitaires

CONTROLER l'activation immunitaire

- •Rechercher un foyer infectieux, AB
- •Augmenter les doses de progestérone (rôles immunosuppresseur démontré)
- •PRINCIPE Actif ANTI- inflammatoire

Corticoïdes /HBPM / Intralipides

Eviter exposition liquide séminal

Quel taux de P en phase lutéale? Induction simple

279 F mid luteal P > 7,9 ng/ml

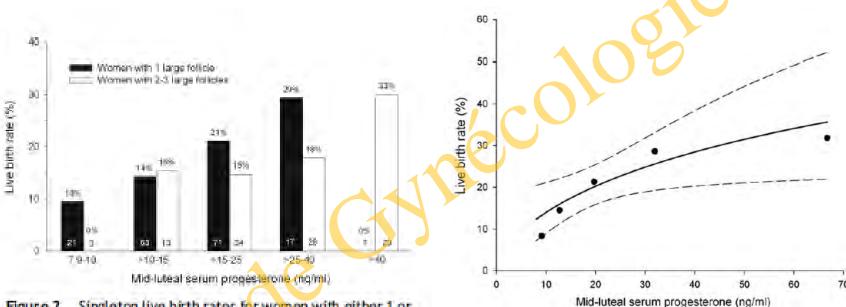


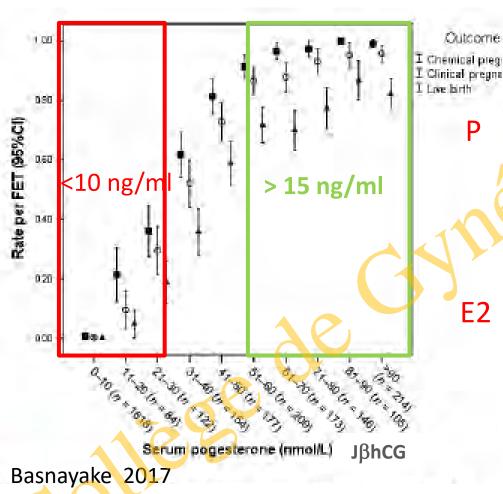
Figure 2 Singleton live birth rates for women with either 1 or 2—3 large follicles (>15 mm) according to their serum concentrations of progesterone in the mid-luteal phase. The total number of women in each subgroup is shown within the bar. Note: women who had twin births are excluded (n = 8).

Figure 3 Multivariate logistic regression model for prediction of the chance of a live birth (mean \pm 95% CI) based on the mid-luteal progesterone concentration. The observed mean live birth rates in the five subgroups are shown by the filled circles.

Augmentation des taux de naissance avec taux de P P/ corps jaune = reflet qualité follicule

Quel taux de P en phase lutéale? Cycle naturel

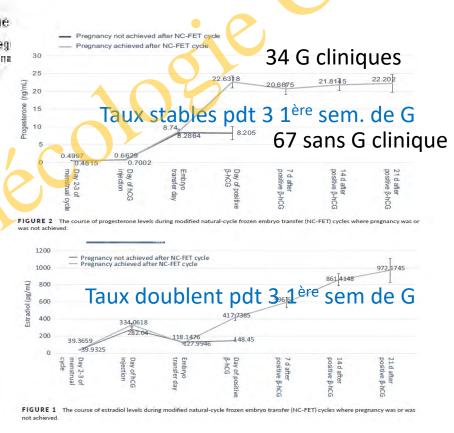
TEC détection pic sanguin LH, transfert à J3 post pic de 1 ou 2 embryons J2 RCT hCG 1500 UI J FET et 6 jours + tard ou rien Dosage P J9 post pic LH (avant 2 èm e inj)

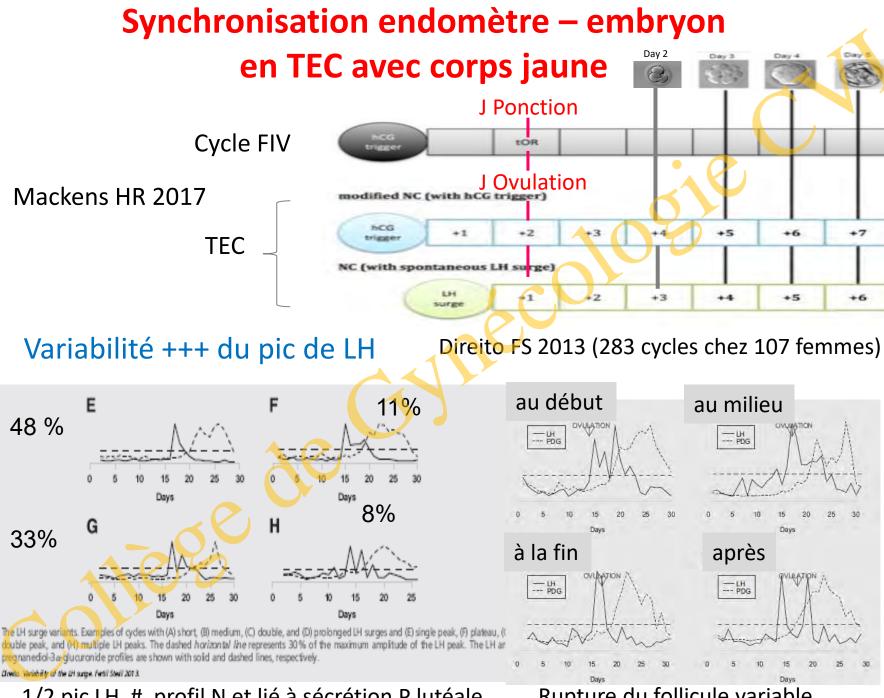

Lee HR 2017	Soutien hCG n=225	Contrôles n=225	р
Age	37 (34-39)	37 (35-39)	NS
Endomètre (mm)	10.3 (9-12.3)	10.3 (9-12.3)	NS
Transfert 1 seul embryon	30.2 %	33 %	NS
Au moins 1 embryon top Q	48 %	37.8 %	0.03
P J6 post TEC (nmol/l) 15 ng	/ml 52.3 (40-66.4)	55.5 (43.9-72.4)	NS
Grossesses débutantes	35.6 %	38.7 %	NS
FCS/ G débutantes	27.5 %	25.3 %	NS
Naissances vivantes	25.3 %	28.9 %	NS

	В	P-value	OR	95% CI
Multivariate logistic regression				
Age of women during IVF (years)	-0.057	0.094	0.945	0.884-1.010
Endometrial thickness	0.086	0.055	1.090	0.998-1.189
Number of embryos transferred in FET	0.717	0.005	2.048	1.246-3.365
Presence of top quality embryo after thawing	0.415	0.056	1.514	0.984-2.331
Progesterone level 6 days after FET (nmol/L)	0.001	0.765	1.001	0.996-1.005

Taux de P milieu PL non prédictif de succès en TEC

Quel taux de P pour corps jaune gravidique adéquat?


3002 TEC en cycle naturel Pic urinaire LH Pas de soutien lutéal


Taux de grossesse et de naissance réduits

si < 15 ng/ml (50 nmol/l)

TEC en cycle naturel modifié
Pas soutien luteal

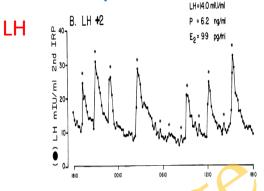
Ramezanali 2019

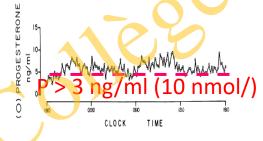
1/2 pic LH # profil N et lié à sécrétion P lutéale

Rupture du follicule variable

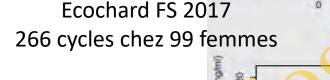
Taux de progestérone en phase lutéale

3 phases: montée, plateau (> 10 ng/ml), descente

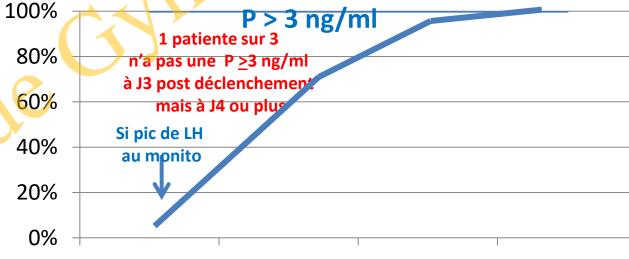

Variabilité ++ début de la phase lutéale


1 à 3 jours: 38 % des cas

4-5 jours: 40 % des cas

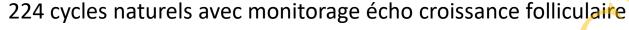

> 5 jours : 22 % des cas

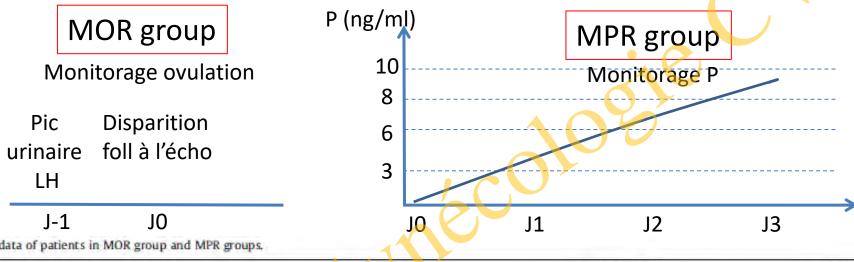
P non corrélée à LH début phase lutéale



Filicori 1984

J2 post hCG J3 post hCG J4 post hCG > J4 post hCG 1753 cycles TEC (JV 2012 à 2018) cycle naturel modifié ou stimulation paucifolliculaire


LH


Cycle day relative to ovulation (Ultrasound day of ovulation = Day 0)

Blood progesterone

Cycle day relative to ovulation

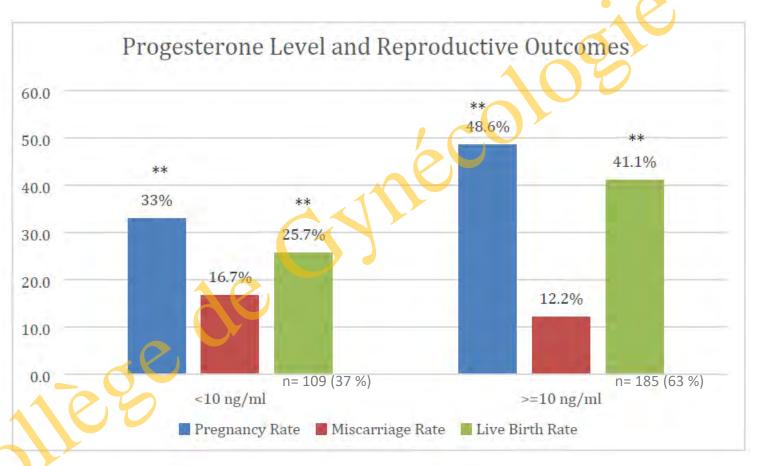
Comparaison timing du transfert basé sur ovulation vs sur dosage P

IVF/ICSI data of patients in MOR group and MPR groups,

	MOR group	MPR group	p Value
No. of patients	89	135	
No. of embryos warmed ^a	2(2-2)	2(2-2)	NS
Cryosurvival (%)b	190/197(96.4)	277/286(96,9)	NS
No. of embryos transferred ^a	2(2-2)	2(2-2)	0.016
No. of top-quality embryos transferred	1(0-2)	1(0-2)	NS

Clinical outcomes after FET in the MOR group and MPR groups,

	MOR group	MPR group	Odds ratio	95% CI	p Value
Clinical pregnancy, n	43	85			
Rate without adjustment (%)	48.3	63.0	1,819°	1.057-3.130°	0.030
Rate with adjustment (%)	48.1 ^b	61.6 ^b	1.996	1.123-3.549°	0.019 ^c
Ongoing pregnancy rate, n(%)	37(41.6)	73(54.1)	1.655°	0.964-2.841°	NS ^a
Implantation rate (%)	66/188 (35.1)	113/265(42,6)			0.001


Dong EJGO&RB 2014

Timing du transfert basé sur monitorage taux de P 2 fois plus efficace

Synchronisation en TEC avec corps jaune

Gaggiotti-Marre HR 2020

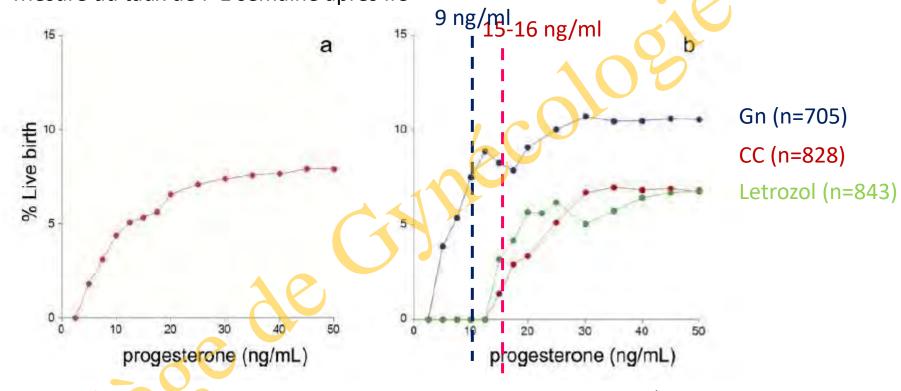
n=294 TEC blastocystes (+/- PGT –A) en cycle naturel sans soutien lutéal Dosage de P la veille du transfert de blastocyste

** Statistically significant differences

Naissances Risk difference 15,4 % (5-26)

Synchronisation en TEC avec corps jaune 1753 cycles TEC (JV 2012 à 2018) cycle naturel modifié ou stimulation paucifolliculaire

P> 3 ng/ml	< J3 n=167	J3 n=1007	>J3 n=579	P
Age (ans)	34.8 <u>+</u> 4.4	34.2 <u>+</u> 4.7	33.6 <u>+</u> 4.6	0.004
BMI (kg/m2)	25.3 <u>+</u> 4.6	24.8 <u>+</u> 4.5	25.5 <u>+</u> 4.7	0.01
P (ng/mL)	4.8 <u>+</u> 2.6	5.34 <u>+</u> 3.2	4.76 <u>+</u> 1.4	< 0.0001
E2 (pg/mL)	190 <u>+</u> 183	160 <u>+</u> 158	133 <u>+</u> 132	< 0.0001
LH (UI/L)	7.8 <u>+</u> 7.3	6.3 <u>+</u> 3.7	8.5 <u>+</u> 4.7	< 0.0001
J2 / J3 Blasto (%)	11/58/31	10/50/40	9/47/44	0.04
Taux de G débutante (hCG>100)	32.9	33.5	37.4	NS
Taux de G cliniques (AC+ écho)	31.1	29.2	32.1	NS
Taux de naissances vivantes	27.5	25.4	26.7	NS


	Univariate logistic regression			Multiv	ariate logistic reg	gression
Parameters	OR	IC 95 %	р	ORa	IC	р
Age/ < 35 ans	2					
> 35 ans	0.59	[0.48-0.75]	< 0.001	0.76	[0.67-0.85]	< 0.01
Cinétique de P/ J3			0.73			0.57
<j3< th=""><th>1.05</th><th>[0.82 - 1.33]</th><th></th><th>1.12</th><th>[0.88 - 1.44]</th><th></th></j3<>	1.05	[0.82 - 1.33]		1.12	[0.88 - 1.44]	
> J3	1.01	[0.85 - 1.20]		0.96	[0.80 - 1.16]	
Stade E J3	-	-	< 0.001			< 0.01
J2	0.85	[0.66 - 1.09]		0.84	[0.64 - 1.09]	
Blasto	1.44	[1.21 - 1.70]		1.51	[1.26 - 1.80]	
Nombre ET 1	-	-	0.02			<0.01
>=2	1.28	[1.03 - 1.59]		1.23	[1.10 - 1.38]	

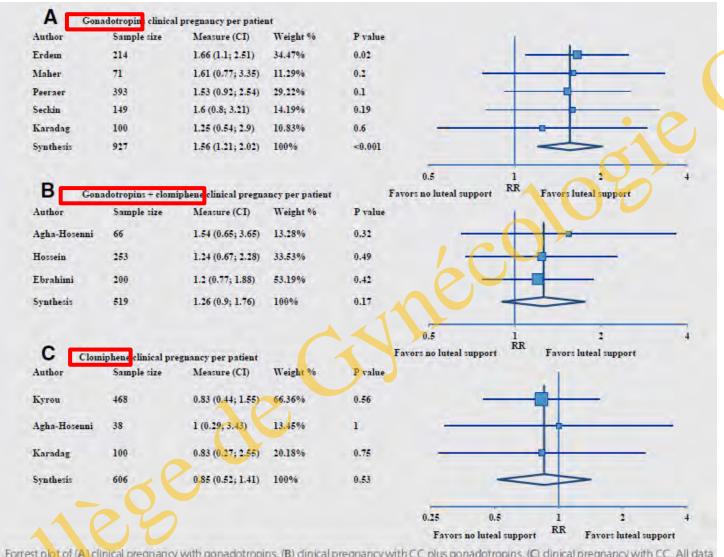
Taux de progestérone et stim + IIU

Hansen JCEM 2018 (étude AMIGOS inf idiopathique 900 couples 2376 IIU)

Stim Gn ou letrozol ou CC + déclenchement hCG 10 000 UI

Mesure du taux de P 1 semaine après IIU

aOR 2,17 (1,04-4,48) Si P > 10^{ème} percentile


Nb follicules > 16 mm (moy: 2)

Taux d'E2 (moy: 730 pg/ml Gn

625 pg/ml CC

160 pg/ml Letrozol)

Soutien lutéal stimulation + IIU

Forrest plot of (A) clinical pregnancy with gonadotropins, (B) dinical pregnancy with CC plus gonadotropins, (C) dinical pregnancy with CC. All data reported on a per-patient basis.

Green. Progester one luteal support after IUI. Fertil Steril 2017.

11 études 2842 patientes 4065 cycles

Soutien lutéal bénéfique uniquement si stimulation par Gn (stim+ forte?)

Rétrocontrole négatif E2 / LH lutéale si E2 > 700 pg/ml

Soutien lutéal stimulation + IIU

TABLE 1 Green FS 2017 11 études 2842 patientes 4065 cycles

Authors (reference)	Country of study	Patients	Ovarian stimulation	P supplementation	Ovulation triggering	No. of cycles allowed
Erdem et al. 2009 (23)	Turkey	Unexplained infertility	75 IU FSH starting cycle day 3	Crinone 8% post-IUI day 2 through 12 wk	10,000 U hCG	Up to 3
Kyrou et al. 2010 (24)	Belgium	Unexplained infertility (implicit)	50 mg CC cycle days 3–7	Utrogestan 200 mg in 3 separate doses post-IUI day 1 through 7 wk	5,000 ti hCG	T.
Ebrahimi et al. 2010 (27)	Iran	Unexplained infertility	50 mg CC BID cycle days 3-7 plus 75 IU hMG cycle days 7-9	Cyclogest 400 mg daily post-IUI day 2 through 10 wk	5,000 U hCG	Up to 3
Maher 2011 (25)	Egypt	Unexplained Infertility (implicit), anovulatory infertility, at least one patent fallopian tube, post-wash total motile sperm ≥ 1 × 10 ⁶	75 IU FSH starting days 2–5	Crinone 8% post-IUI day 1 through 14 d	ta,oda u ACG	Up to 6, patients alternated treatment groups each cycle
Agha-Hosseini et al. 2012 (26)	Iran	Unexplained infertility (impocit)	Either 50 mg CC BID or letrozole 5 mg daily cycle days 3–7, with or without 75 IU hMG days 3–7	Cyclogest 400 mg daily post-IUI day 1 through 14 d	10,000 U hCG	1
Aali et al. 2013 (17)	Iran	Age <40 y, FSH<12 IU/L, sperm concentration ≥10 × 10 ⁶ /mL	75–150 IU hMG starting on cycle day 3 or 100 mg CC on cycle days 3–7 plus hMG on days 8 and 9	Cyclogest 400 mg daily post-IUI day 1 through 10 d	10,000 U hCG	1
Romero Nieto et al. 2014 (19)	Spain	Unexplained infertility (implicit), post-wash total motile sperm ≥3 × 10 ⁶	Urinary or recombinant gonadotropins starting on cycle days 2-	Progesterone 200 mg vaginally daily post-JUI day 1 until 8 wk	6,500 IU recombinant hCG (rhCG) (Ovitrelle)	Up to 4, patients re-randomized each cycle
Seckin et al. 2014 (20)	Turkey	Unexplained infertility	75 IU FSH starting on cycle day 3; dose modified based on response	Crinone 8% on day of IUI until 12 wk	10,000 IU hCG	Up to 3
Hossein Rashidi et al. 2014 (18)	Iran	Unexplained or anovulatory infertifity at least one patent fallopian tube, mild male factor	190 mg CC on cycle days 3–7 plus 75 IU hMG on cycle days 7–10 (onger based on response)	Progesterone 400 mg vag nally BID post-IUI day 2 through 8 wk	10,000 U hCG	1
Karadag et al. 2016 (21)	Turkey	Unexplained infertility	Arm 1) 100 mg CC on cycle days 3–7 Arm 2) 75 IU FSH starting on cycle days 2–4	Crinone 8% post-IUI day 1 until 10 wk	6,500 (U rhCG (Ovitrelle)	*
Peeraer et al. 2016 (22)	Belgium	Unexplained infertility, endometriosis, post-wash total motile sperm ≥5 × 10 ⁶	37.5–75 IU FSH starting on cycle days 2–3; increased by 37 IU on cycle day 7–10 if no response	Crinone 8% post-IUI day 1 for 15 d	rhCG (Ovitrelle; dose not specified)	

Risque insuffisance lutéale liée au terrain
Infertilité idiopathique (troubles de l'ovulation à minima?)
Insuffisance ovarienne débutante (corps jaune - fonctionnel)

Take Home messages P en phase lutéale

Un ou quelques CJ

> Dosage P en milieu de phase lutéale

Pas facile à interpréter: pulsatilité, technique dosage, nb follicules Seuil classique à 10 ng/ml non validé sur taux de grossesse Seuil à 15 ng/ml? Intérêt du dosage pour taux grossesse ou FCS?

Synchronisation endomètre –embryon en TEC

Dosage P début de phase lutéale efficace pour optimiser synchronisation et améliorer chance de grossesse

Dès que P > 3 ng/ml = équivalent J1 post ponction

Seuil non # si ovulation spontanée ou déclenchement par hCG en cycle monofoll.

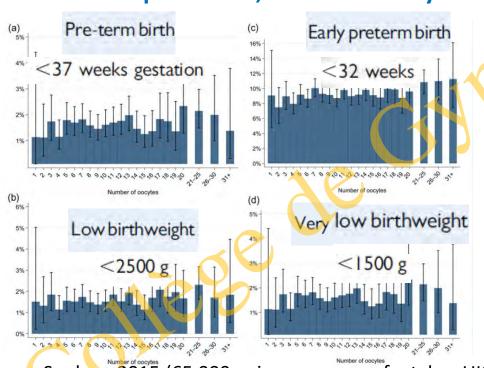
Quand donner un soutien lutéal?

Soutien lutéal non requis si taux d'estradiol < 700 pg/ml (# retrocontrôle neg/LH)

Sauf terrain à risque insuffisance lutéale: infertilité idiopathique, baisse RO, FCS Obligatoire si déficit LH: anovulation groupe I OMS

Bénéfices pour les mères et la santé des enfants?

Transfert frais


Plus de prématurité
Plus de petit poids de naissance

Maheswari HRU 2018

TEC

Plus de macrosomie Plus de pathologie hypertensive

Risque Prématurité OR =1,15 et faible poids OR1,17 si > 20 ovocytes

Risques nettement plus important en TEC THS vs cycle naturel (CN)

Auteur	Pop acc TEC	THS vs C Nat OR ajusté
Ginstrom Emstad AJOG 2019	Singleton 1446 THS 6297 CN	Patho hypert 1.78 (1.43-2.21) Macrosomie 1.62 (1.26-2.09)
Jing	1025 THS	Patho hypert
JARG 2019	3872 CN	1.78 (1.43-2.21)
Saito	75 474 THS	Patho hypert
HR 2019	29760 NC	1.43 (1.14-1.80)

Sunkara 2015 (65 000 naissances monofoetales, UK)

Phase lutéale perturbée

Placentation perturbée?